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THE EFFECTS OF MOISTURE ON THIN FILM DELAMINATION AND 
ADHESION 

 
Patrick Waters 

ABSTRACT 

Significant drops in adhesion have been measured for copper and diamond like 

carbon (DLC) films with the introduction of water at the film/substrate interface.  A 1 µm 

thick tungsten superlayer with high compressive residual stress was deposited on the 

films of interest to help induce interfacial debonding by indentation.  Modifications were 

made to the superlayer indentation technique to introduce water at the interface while 

performing indents.  Film adhesion dropped by a factor of 10 to 20 for the copper films 

and 50 to 60 for the DLC films.  The reduction in adhesion is believed to be caused by a 

combination of lowering surface energy and a chemical reaction at the crack tip.  When 

the film compressive residual stress is at least 4 times the critical buckling stress of a 

debonded film, telephone cord delaminations morphology can be observed.  

Delamination propagation has been induced in the past by applying a mechanical force to 

the film and similar results have been observed with the introduction of water.  Crack 

propagation rates of 2 to 3 microns per second were measured for the DLC films with the 

introduction of water at the film/substrate interface.  Telephone cord delaminations show 

potential for future use as microchannels in microfluidic devices and have shown 

excellent stability when manipulated with a microprobe to control fluid transport. 

 vii 
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CHAPTER 1 

INTRODUCTION 

1.1 Thin film technology 

 
 Thin films can be found everywhere, from the paint on a car to the interconnects 

in the computer processor.   There is an endless variety of applications based on the 

various functional properties of thin films.  Some applications include thin films used in 

information storage, optics, microelectronics and in biomedical fields.  These 

applications are possible because of the thin films’ magnetic, reflective, electrical, 

mechanical and other properties.  Whenever thin films are to be applied, certain 

mechanical properties such as modulus and hardness need to be known for design 

specifications.  Generally the bulk material properties cannot be used for predicting the 

mechanical properties of a thin film.  A major contributor in influencing the mechanical 

properties of thin films will be the method and parameters used for its deposition.   

Just as there are thousands of bulk materials to choose from, there are just as 

many types of thin films.  Thin films can be metallic, ceramic, polymer or even metallic 

glass to list a few.  Many tests have been performed to measure the mechanical properties 

and adhesion of these different types of thin films [1-4].  Some common methods for 

depositing the various types of thin films are electroplating, chemical vapor deposition 

(CVD) and physical vapor deposition (PVD) [5].  Regardless of what process is used for 
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deposition or what application the thin film is being used for, good film adhesion is 

usually required.   

 The motivation behind this research is to measure the effects of a wet and 

potentially corrosive environment on film adhesion and compare those values to the 

adhesion measurements taken in a dry environment.  With the growing number of uses 

for thin films, there will be an increase in the variety of environments in which these thin 

films will be operating.   

1.2 Adhesion 
 
 Adhesion can be described as the mechanical strength or bond strength between 

two joined bodies.  To separate the two bodies an external force must be introduced.  

Adhesion is believed to be caused by a few different reasons:  atomic bonds created by 

the interaction of the two surfaces which is thought to be the primary contributor, 

mechanical locking and friction due to surface texture and a transition layer produced by 

the diffusion of one material into the other [6].  From a thermodynamic perspective, the 

true work of adhesion at the interface is the amount of energy required to create free 

surfaces from the bonded materials.  The ideal case where the true work of adhesion can 

be defined is when brittle fracture occurs and there is no energy dissipated due to plastic 

deformation.  All energy is conserved as new surfaces are formed: 

fssfAW γγγ −+=      (1), 
 

where γf is the surface energy of film, γs is the surface energy of the substrate and γfs is the 

interfacial energy.   

 2 
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The interfacial energy can be found by knowing the surface energies of the film 

and substrate and using the contact angle technique schematically presented in Figure 1: 

Θ−= cosfsfs γγγ      (2), 
 

where Θ is the contract angle between the droplet free surface and the substrate.  If Θ is 

less than 90º, the liquid is said to wet the surface.  If Θ is greater than 90º, the cohesive 

forces in the liquid are greater than the adhesive forces of the liquid to the surface and the 

liquid is non-wetting.  Usually the term surface tension is used for liquids and the term 

surface energy is used for solids.  Water has a surface tension of 72 dynes/cm2 at 25º C, 

and decreases with temperature increase.  Adding impurities like soap or detergent will 

also decrease the surface tension of water, “wetting it out” so that is can penetrate smaller 

pores making it a more efficient cleaner.  The Sessile drop method can be used for 

finding the surface energy of solids [7]. 

γf 

γs 
γfs

Θ 

 

Figure 1. Contact angle technique. 
 

The contact angle technique is performed by placing a drop of a liquid of known 

surface tension on the test surface and illuminating it through a moveable eyepiece. The 

eyepiece is connected to an electronic protractor which displays the viewing angle.  The 

device is constructed so that when the viewing angle equals the contact angle, the 
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illumination viewed through the eyepiece is maximized. The contact angle and the 

surface tension of the liquid can then be used to calculate the surface energy of the 

substrate [7]. 

The dyne pen is another method for measuring the surface energy for either the 

film or the substrate [7].  This method involves the use of a set of commercially available 

felt-tip pens containing a range of inks with a known surface tension. One of the pens is 

used to apply a thin film of ink over approximately 7 square centimeters of the test 

surface. If the ink film breaks into droplets in less than two seconds, the process is 

repeated again using a pen filled with ink having a lower surface tension. This procedure 

is used to determine the lowest surface tension ink that forms a continuous film and 

remains intact for at least two seconds. The value of the surface tension of this ink is then 

taken as the surface energy of the test substrate [7].  

 With the surface energies and contact angle known the Young-Dupré equation 

can be used to find the true work of adhesion: 

( )Θ+=−+= cos1ffssfAW γγγγ     (3). 
 

Lipkin and others measured the true work of adhesion of a gold thin film on a 

sapphire substrate to be approximately 0.9 J/m2, which corresponds to the typical values 

of 1-2 J/m2 for the true work of adhesion measured for metal films on ceramic substrates 

[8].  

In a perfect situation we could say that the true work of adhesion is equal to the 

film/substrate adhesion.  This follows the idealized case of Griffith fracture where the 

fracture resistance Γi, is assumed to be equal to the thermodynamic (true) work of 

adhesion WA.  The true work of adhesion does not account for energy loss due to plastic 
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deformation or friction.  Even as fracture occurs in a brittle material there will always be 

a small plastic zone that ahead of the crack tip radius that may extend from a single bond 

to over several atomic spacings [9, 10].   The small nonlinear plastic zone immediately 

surrounding the crack tip will be followed by a linear elastic zone that serves the function 

of transmitting the applied stresses to the inner regions.  A more sensible value of 

adhesion is the practical work of adhesion: 

( ) sfAAPA UUWWW ++=,                                     (4), 
 

where WA is still the true work of adhesion, Uf  is the energy per unit area spent due to 

plastic deformation in the film and Us is the energy per unit area spent due to plastic 

deformation in the substrate.  The practical work of adhesion WA,P, is also called the 

interfacial toughness or the resistance to crack propagation of the film and substrate pair.  

The practical work of adhesion is more conducive for analyzing fracture in metal films 

and will be used as the adhesion measurement in this thesis. 

1.3 Fracture criterion 
 

Now that the basic definitions of adhesion are established, fracture mechanics will 

be considered.  In 1920 Griffith formulated that a crack will continue to grow as long as 

the strain energy release rate (G) from the surrounding elastically strained material 

exceeds the energy required to form new surfaces [11]:  

iG Γ≥         (5), 
 

where G is the strain energy release rate and Γi is the material’s resistance to crack 

growth.  G is frequently referred to as the mechanical energy release rate and it is defined 

as [12]: 
 5 
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dA
dUG M−=           (6), 

 
where A is the crack area and dUM is the total mechanical energy change associated with 

the crack propagation.  The total mechanical energy change can be broken into two parts 

and is defined as: 

AEM dUdUdU +=            (7), 
 
where dUA is the change in energy of the applied loading system and dUE is the change in 

elastic strain energy.   

The change in elastic energy can be described for two conditions:  the fixed grips 

or the constant load conditions.  Under fixed grips condition the applied loading system 

suffers zero displacement as the crack extends (u0 = constant) and the elastic strain energy 

will decrease with crack extension.  With fixed grip conditions: 

constu =0  

λ
λ

d
u

dU E 2

2
0

2
1

−=             (8), 

 
where λ=λ(c) is the elastic compliance.   

The second, constant load condition, is where the elastic strain energy increases 

with a constant load: 

constP =  

λdPdU E
2

2
1

=              (9), 

Since G does not depend on the loading type the strain energy release rate can be defined 

as the rate of change of stored elastic strain energy with respect to the crack area under 

fixed grips conditions: 
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0u

E

A
UG ⎟

⎠
⎞

⎜
⎝
⎛

∂
∂

−=           (10), 

 

  Other methods for evaluating G follow the crack stress field analysis and the next 

few equations are classic equations for a straight crack of length 2a: 

aK yyI πσ=   aK xyII πσ=   aK yzIII πσ=        (11), 

where K is the stress intensity factor for mode I (opening mode), mode II (shear mode), 

mode III (twisting mode) and σ is the stress field at the crack tip and a is the crack length.  

Modes one, two and three describe how the loads are being applied to the crack.   Figure 

2 represents the different modes of fracture and if the stress intensity factor K is greater 

then the critical stress intensity factor Kc, the crack will propagate.   

Y

X

a 

 

Figure 2. Modes of fracture: a) Mode I b) Mode II c) Mode III. 
 
 The Griffith and stress intensity approaches were combined by Irwin [9]: 

E
KKK

G IIIIII )1()1()1( 22222 υνν ++−+−
=    (12), 
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where E is Young’s Modulus and ν is Poisson’s ratio of the bulk material.   

When making the transition from fracture in bulk materials to thin films, 

additional effects must be taken into account in order to predict the fracture path.  For 

thin films, the fracture path will depend on interfacial fracture toughness, residual stresses 

present in the film, mismatches of modulus between film and substrate and the phase 

angle Ψ.  For weakly bonded materials the film/substrate interface will likely be the path 

of fracture.  Because of the mode mixity, the interfacial toughness of the film and 

substrate varies with Ψ, seen in Figure 3.  For one-dimensional blisters, the phase angle 

defining the relative contributions of normal mode I and shear mode II loads are given by 

[13]: 

ωξω
ωξω

cos3sin4
sin3cos4tan

+−
+

==Ψ
I

II

K
K

    (13), 

where ξ equals δ/h, δ is the blister height, h is the film thickness (Figure 4) and ω is a 

dimensionless function of the Dundurs’ parameters, α and β, which describe the elastic 

mismatch between the film and substrate.  The Dundurs parameters for plane strain are 

[14]: 

( )( ) ( )
( )( ) ( )1221

2121

11/
11/

υυµµ
υυµµ

α
−+−
−−−

=  

( )( ) ( )
( )( ) ( )2121

1221

11/
2121/

2
1

υυµµ
υυµµ

β
−+−
−−−

=                               (14), 

 

 where µ and ν are shear modulus and Poisson’s ratio, and the subscripts 1 and 2 refer to 

the upper and lower bimaterial layers. 
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Figure 3. Strain energy release rate as a function of Ψ. 

0° 90° Ψ 

Energy 
Dissipation 

Thermodynamic Work 
of Adhesion 

δ h 

Γ

ΓIC

 

 

Figure 4. Blister dimensions. 
 

1.4 Literature review 

Fracture mechanics in bulk materials have been well documented, and in recent 

years, has evolved into topics related to thin films and multilayers. The following 

publications and research results have influenced the direction of this thesis and has 

raised some unanswered questions which are going to be discussed in the later chapters.  
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1.4.1 Environmentally assisted fracture 

Stress-corrosion cracking (SCC) has been studied in bulk materials, but not as 

extensively in thin films.  Traditionally, SCC in bulk materials is defined as the 

combination of tensile stress and a corrosive environment. Tensile stress is not always the 

only stress acting on a structure.  The stresses involved can also be compressive, as a 

result of thermal stresses, residual stresses, and even the corrosion process itself.  Stresses 

induced by the corrosion process are caused by the corrosion products which take up 

more volume than the initial material.  That increase in volume creates residual stresses.  

Instead of grouping all these cases under SCC, the term environmentally assisted fracture 

is used.   

Common examples of environmentally assisted fracture appear in steel bridges, 

steam engines, gas pipelines and heat exchangers [15].  All of the aforementioned are 

structures under large loads in wet and corrosive environments.  Failures in bulk 

materials and structures are usually the result of an overload due to a loss in cross-

sectional area.  Fortunately, extensive corrosion only takes place under certain 

combinations of materials and environment.  In the early stages, environmentally assisted 

fractures have cracks on the microscopic level, which may not immediately lead to 

catastrophic failure in bulk materials, but can lead to failure or delamination in the case of 

thin films. 

1.4.2 Water vapor effects on soda-lime glass fracture 

Static fatigue of glass was discovered in 1899 by Grenet [16], who observed the 

effects of loading rate and time on the glass strength.  Glass loaded at rapid rates or used 

to support a given load for a short period of time was relatively strong.  When it was 
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loaded at a slower rate or forced to support a given load for a longer time the glass was 

relatively weak [16].  Over the next 30-40 years many authors had summarized the 

experimental and theoretical results of static fatigue tests.  The main belief was that static 

fatigue was a result of exposure to the atmosphere, primarily a stress-dependent chemical 

reaction between water vapor and the surface of glass.  When water vapor is able to 

penetrate into the small cracks within the glass, the cracks lengthen and failure occurs 

when the crack tip is long enough to meet the Griffith fracture criterion.   

P 

a 

P 

 
Figure 5. Schematic of double cantilever cleavage test. 

In 1967 Wiederhorn ran tests to further explain the results observed in glass 

failure.  Using a double cantilever cleavage arrangement seen in Figure 5, a constant load 

was applied and the crack velocity was measured as a function of the applied load and 

relative humidity.  Results showed that the crack motion is complex and depends on the 

amount of moisture in the air [17].  Three regions of motion were identified and their 
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trend has been recreated in Figure 6.  The crack velocity is plotted against the applied 

load and for each of the runs the relative humidity was varied.   

Region I is the initial steep line on the log scale.  Region II is the portion of the 

lines that appear to plateau.  Region III is where all the runs come together into another 

steep line.  In region I the crack velocity is exponentially dependant on the applied load.  

For region II the crack velocity is nearly independent of applied load and the position of 

each curve shifts to lower velocities as the water amount in the environment decreases.   

In region III the crack velocity again exponentially depends on the applied load.  

Wiederhorn derived equations to fit the data in regions I and II, but was unsuccessful for 

predicting the trend in region III.   

The velocity of crack propagation in region I is predicted by: 

nbPaxv n /)exp0275.0( 0=     (15), 

where a and b are constants taken from the rate law: 

bPneaxN =       (16), 

where N is the number of moles of water per unit area per unit time reacting at the 

surface, x is the mole fraction of water in the nitrogen next to the crack tip, P  is the 

applied load and n is the order of the chemical reaction. 

 For region II the velocity of crack motion is predicted by: 

nxcDv OH δ/0275.0 02
=+     (17), 

where DH2O is the diffusion coefficient of water vapor to crack tip and δ is the thickness 

of the boundary layer of nitrogen next to the crack tip. 
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Figure 6. Dependence of crack velocity on relative humidity adapted from 
Wiederhorn’ experiments [17]. 

 

1.4.3 Moisture effects in thin films 

In addition to moisture effects in bulk glass, environmental degradation of 

adhesion has been considered for silver, low-k dielectric, boron nitride and silicon 

dioxide films [18-23].  In the late 1970’s Sandia Laboratories conducted tests in order to 

explain the deterioration of the silver/glass interface in second surface solar mirrors.  The 

choice of second surface silvered glass for mirror applications was primarily due to the 

durability of glass and the high reflectivity of the silver.  The defects that appeared in the 

solar mirrors are similar in appearance to those shown in Figure 7.  Figure 7 is a picture 

of an early nineteenth century mirror held at The Art Institute of Chicago.  In order to 
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reproduce the effects of aging, tests were performed at an elevated temperature of 65ºC 

and high humidity of 95%.  A few of the final conclusions are listed below [18]: 

1) Water intrusion into the mirror module was arranged in such a way as to recreate 

standing water in contact with the mirror’s backing paint for long periods of time. 

2) Water penetration through the paint layer via a diffusion and/or wicking action is 

enhanced somewhat by the presence of contaminants picked up from the organic 

materials in the module.  These contaminants can act to lower the surface tension 

of the water and allow more rapid penetration through the pores in the paint. 

3) Delamination of the silver layer by an as yet undefined process. 

Tests from Sandia labs showed that there may be more than one mechanism at 

work, including the type of paints used on the back of the mirror, but the primary one was 

due to the presence of water.  Recent conclusions regarding other types of thin films 

indicate that Sandia National Laboratories correctly concluded that water was a key 

factor in the deterioration of the solar mirrors. 
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Figure 7. Delamination of silver backing on a mirror. 
 

Vlassak and colleagues at Harvard University have been studying environment 

effects on the fracture of organosilicate glass (OSG) thin films.  OSG thin films are one 

of the leading candidates among new dielectric materials being considered for 

microelectronics.  The presence of –CH3 groups makes the OSG films very porous and 

less dense than the fused silica.  Additionally, with their mechanical properties being 

inferior, there is a concern for the possibilities of delamination during processing [19].  

Through the use of the four-point bending technique, subcritical crack growth was 

studied and the strain energy release rates and the average crack growth rates were 

evaluated.  Results showed that with increasing relative humidity, the stress-corrosion 

thresholds shift to lower values of G.  It was also recorded that an increase in pH of the 

solution results in a significant increase in crack velocity and decreasing adhesion [20, 

21].  Similar effects were seen in other films. 
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The cubic phase of boron nitride (cBN) is one of the hardest materials known and 

for that reason it has potential in thin film wear resistant applications.  Due to the 

deposition parameters needed to obtain a cBN film, high compressive residual stress of 5-

20 GPa is typically seen.  Frequently, thicker films experience even higher compressive 

stress.  One result of higher compressive stress is a greater likelihood of spontaneous 

delamination.  It was noted that an increase in relative humidity accelerated the 

degradation of the thin film. 

Stress analysis was initially conducted to examine the potential increase in the 

residual stress with an accompanying increase in relative humidity.  It was noticed that 

there was a small short term increase in stress.  It was not, however, enough to induce 

delamination.  Long term observation indicates a significant decrease in residual stress.  

The result was caused by delamination of the cBN thin film, which is thought to be 

triggered by an increase in humidity.  Even breathing on the cBN films after delamination 

had occurred, increased film buckle size by up to 1 µm. The final conclusions drawn 

from these tests indicate that water has a strong effect on film delamination and that there 

must be an interaction at the film/substrate interface with water [22].   

For PECVD SiO2 films electrostatic force grips have been applied in tensile tests 

for measuring humidity effects on their strength.  The tensile test and fracture toughness 

measurements were conducted in both air and in vacuum.  The mean strength was 

measured to be 1.2-1.9 GPa in vacuum and 0.6-1.0 GPa in air [23].  It was concluded that 

the drop in tensile strength was caused by moisture in the air which is absorbed at the 

crack tip, therefore increasing crack growth rates. 
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The preceding work on environmentally assisted fracture illuminates a very clear 

trend that establishes water as a catalyst to increasing crack growth rates.  In the case of 

thin films, this has resulted in lower adhesion values, which in turn affects the 

functionality of the thin film.  In this thesis quantitative adhesion results are reported 

showing a significant drop in adhesion with the introduction of water.  Considerations on 

why there is a drop in adhesion will also be discussed. 
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CHAPTER 2 

THIN FILM DEPOSITION AND MECHANICAL CHARACTERIZATION 

2.1 Methods for depositing thin films 

 
It was mentioned earlier that deposition processes can influence the mechanical 

properties and create defects in thin films.  For this reason bulk material properties cannot 

always be used for predicting the mechanical properties of thin films.  Some conditions 

like temperature, pressure and deposition rate can be controlled during the deposition 

process.  These conditions, or parameters can force thin films to settle with a certain 

crystal orientation or lack thereof, which will effect the mechanical properties of the thin 

film [5].  Intrinsic stresses can also be a product of the deposition parameters and may 

lead to cracking or buckling of the thin film.  It will be described here how these 

compressive residual stresses act as an additional stored energy source to facilitate 

buckling in thin films and will be used in nanoindentation adhesion measurements.  

2.1.1 Physical vapor deposition (PVD)  

PVD is a method in which atoms are transferred from a source (target) to a 

substrate in the form of a vapor.  It is a very popular method for depositing metals due to 

the lower temperatures during deposition. When temperatures are high thermal  
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stress may develop, caused by mismatches in the thermal expansion coefficients of the 

substrate and the thin film.  Two commonly used forms of PVD are sputtering and 

evaporation.   

Sputter deposition was discovered in 1852 by Grove [24].  It produces a thin film 

by dislodging atoms from the source through the impact of gaseous ions.  The substrate is 

placed in a vacuum chamber with the source material and an inert gas at low pressure 

usually in the mTorr range.  A gas plasma is struck by applying voltage to the target, 

causing the gas to become ionized, where it then accelerates towards the surface of the 

target.  Atoms are knocked off the target material and condense on the substrate.  The 

basic principle behind sputter depositing is the same for all sputtering technologies.  

What usually differs between the different types of sputtering methods is the power 

supply.  Some commonly used processes include DC, RF, magnetron and reactive 

sputtering.  The 2400 Perkin-Elmer sputtering system was used for depositing the Cu 

films tested in this thesis.  A typical RF sputtering setup is shown in Figure 8. 

 

Target 

Substrate 

Vacuum Inert Gas 

RF Power 
Source 

Figure 8. Schematic of a RF sputtering system. 
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In evaporation deposition, a substrate and source materials are placed inside a 

vacuum chamber.  The source material is heated to the point where it starts to evaporate.  

The vacuum allows the atoms to evaporate freely in the chamber and condense on the 

substrate.  Like sputter deposition, there are many different types of evaporation, but the 

basic principles remain the same.  The main differences in evaporation deposition 

methods have to do with the way the source material is heated.  Two popular methods for 

heating the source are electron beam evaporation and resistive evaporation.  In e-beam 

evaporation an electron beam is aimed at the source material causing local heating and 

evaporation.  In resistive evaporation a holder containing the source material is heated by 

electrical resistance with a high current to evaporate the material.   

 

2.1.2 Chemical vapor deposition (CVD) 

In chemical vapor deposition the substrate is placed inside a reactor where a 

number of gases can be supplied depending on the film needed.  The fundamental 

principle behind the process is that a chemical reaction takes place between the source 

gases.  The product of the reaction condenses on the substrates inside the reactor.  One of 

the problems with CVD is the relatively high deposition temperature (600ºC), which will 

restrict what materials can be used.  Additionally the rather slow deposition rates and 

hazardous byproducts formed during the processing add to the problems of using CVD.  

Some benefits of the process include quality films with less defects.  Generally higher 

process temperature results in better film quality.  Two variations in CVD technology are 

low pressure CVD which produces layers with excellent uniformity of thickness, and 

plasma enhanced CVD (PECVD).  PECVD can take place at temperatures down to 300ºC 

due to the extra energy supplied to the gas molecules by the plasma. 
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2.1.3 Electroplating 

This process is restricted to depositing electrically conductive materials (metals).  

A substrate, acting as a cathode, is placed in a plating bath or electrolyte solution which 

contains metal ions.  An anode is positioned near the edge of the tank and when voltage is 

applied to the loop, the positively charged metal ions in the bath migrate towards the 

substrate.  The electrons located at the cathode are neutralized causing a metal film to 

adhere to the cathode (substrate).  When electroplating is performed without a power 

source, it is called electroless deposition, and requires reducing agents to supply ions.  A 

simple representation of the electroplating process can be seen in Figure 9.  

 

Power Source

Electrolyte Solution 

Cathode or 
Substrate 

Anode

Container 

                        Figure 9. Schematic of an electroplating system. 
 

Some common deposition processes have been described and due to the 

deposition parameters chosen, mechanical properties will vary.  Bulk material properties 

will not always be sufficient for predicting thin film properties, and for this reason 

nanoindentation is used for measuring thin film mechanical properties. 
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2.2 Modulus and hardness measurements by nanoindentation 
 

The most popular method for testing mechanical properties of thin films on the 

sub-micron scale is nanoindentation.  Elastic modulus and the hardness are the two 

mechanical properties that can be measured by nanoindentation. The Hysitron 

TriboIndenter® was used for adhesion and mechanical properties testing in this thesis.  It 

has nanometer depth resolution due to its highly sensitive three plate capacitive 

transducer and atomic force microscope-like (AFM) imaging capabilities (Figure 10).   

 

 

Figure 10. Hysitron three plate capacitor transducer. 

There are diamond tips available of various shapes that can be used for different 

testing conditions.  While the diamond tip is indenting the sample of interest, the load and 

displacement are continuously recorded in real time.  The upper unloading portion of the 

indentation curve can be used to determine the film stiffness S = dP/dh, where P is 

described by the power relation given by Oliver and Pharr [25]:  

m
plAP )( δδ −=            (18),   

where A and m are fitting parameters, P and δ are the load and displacement taken from 

the top 65% of the unloading curve (Figure 11).  

After the film stiffness is known the reduced elastic modulus can be calculated as 

[25]: 
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c
r A

SE
2
π

=            (19), 

where Ac is the contact area.  It has been observed that the contact area remains constant 

as the indenter is unloaded even though there is a slight depth recovery.  Since the 

indenter itself has finite elastic properties, its deformation contributes to the measured 

displacement.  The reduced modulus Er can be expressed in relation to the film and 

indenter modulus and Poisson ratio as [25]: 

 
2 21 1 1 ind

r iE E E
ν ν− −

= +
nd

      (20), 

where E and ν are film elastic modulus and Poisson’s ratio and Eind and νind are the elastic 

modulus and Poisson’s ratios of the indenter.  

Hardness H, is a material’s resistance to plastic deformation and is defined as: 

maxPH
A

=          (21), 

where A is the projected area of contact (a function of the indentation depth) at the 

maximum load Pmax.  Since both the elastic modulus and hardness calculations are based 

on the contact area produced during indentation, tip area calibration is very important.  

Tip area calibration is achieved by making a series of indents into a sample with known 

mechanical properties such as fused quartz or single crystal aluminum.  Since the elastic 

modulus of the sample is known, it can then be used to back calculate the tip area 

function. 
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δpl

S = dP/dδ 

 

         Figure 11. Load-displacement curve used to calculate the film modulus and           
hardness. 

 
Some precautions should be taken while trying to measure mechanical properties 

by nanoindentation.  Indents should not be made too deep into the thin film because 

effects of the substrate may be noticed [26].  In the attempt to compensate for substrate 

effects on the thin film elastic modulus and hardness, shallow indents are made relative to 

the film thickness.  At the same time, if indents are not deep enough, elastic modulus and 

hardness measurements will be inaccurate.  This inaccuracy is due to surface roughness, 

possible oxidation effects and errors in tip geometry due to machining limitations and 

blunting of the tip [27].  Topographical scans of the indent should also be made on very 

ductile films to ensure that no pile up occurred around the rim of the indent which could 
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also produce errors in contact area.  A topographical image of an indent using the 

scanning capabilities of the Hysitron Trioboindenter® can be seen in Figure 12. 

 

Figure 12. Topographic scan of an indent made in single crystal Al. 
 

The same nanoindenter tool was also used for thin film adhesion measurements.  

Not only can the Hysitron Triboindenter make nanoscale indents for elastic modulus and 

hardness measurements, but it can also produce scratches to find friction coefficients and 

study film wear resistance. 
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2.3 Thin film adhesion tests 

There are many different tests currently being used for measuring thin film 

adhesion.  Some tests require very little sample preparation, while others are more time 

consuming and require thin film patterning using photolithographic techniques [28, 29].  

One of the earliest attempts to measure adhesion was made by Strong in 1935 [30], where 

scotch tape was used to get qualitative results for adhesion.  The scotch tape method was 

obviously inadequate and would not work if the adhesion of the thin film was greater 

than the stickiness of the tape.  No matter what type of thin film adhesion test is being 

employed, all tests require some type of external driving force and/or internal stored 

energy to achieve thin film delamination.  The most common types of thin film adhesion 

tests that are currently being used and will be described are scratch, four-point bend and 

indentation tests. 

2.3.1 Scratch test 

The scratch test is a combination of two operations: a vertical indentation motion 

and a horizontal dragging motion.  While the tip is being dragged horizontally on the 

surface of the thin film, an increasing load in the vertical direction is applied until a 

critical load is reached and the thin film detaches from the substrate.  The critical load is 

then measured and used to calculate the practical work of adhesion of the film to the 

substrate [31]: 

2
1

,
2 2

2 ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=

h
EWrP PA

cr
π      (22), 
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where r is the contact radius, E is the elastic modulus of the film, WA,P is the practical 

work of adhesion and h is the film thickness.  Equation 22 only applies when the normal 

force applied to the film surface drives its delamination, and does not account for residual 

stress in the thin film. 

 A model was later developed to account for both the residual stresses in the film 

and the elastic stress distribution from the scratch for estimating the strain energy release 

rate G0.  The first term in the following equation was developed by Hutchinson and Suo 

[13] and accounts for intrinsic stresses.  The second term is the elastic strain energy per 

unit area stored in the film from the scratch test elastic stress distribution [32]: 
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where σr is the residual stress, τij and σij are the average elastic shear and normal stresses 

in the delaminated film and µ is the film shear modulus. 

 It has been observed that most spalls created around the scratch track are 

symmetric, and in those cases the strain energy release rate can be estimated using a 

circular blister analysis [13, 33, 34 below]: 
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where c = [1 + 0.902(1 - ν)]-1 [13] and σB is the Euler buckling stress. 

2.3.2 Four-point bend test 

The four-point bend test is becoming a popular type of adhesion test and is 

pictured in Figure 13. The test comprises of a central notch that runs through the 
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thickness of the top layer and a symmetrical precrack is induced along the interface upon 

loading.  The notch in the top layer is usually made using a high speed dicing saw [20, 

35] and crack propagation will occur when a critical load is reached.   

P/2b P/2b 

h2 

h1 

2a 

L L 

 

Figure 13. Schematic of a four-point bend test. 
 

For the crack located between the inner loading lines there is a constant moment 

condition and the strain energy release rate should exhibit steady-state characteristics.  

The steady state value Gss is deduced analytically by recognizing that it is the difference 

in strain energies in the uncracked and cracked beams [36]: 
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where the subscript c refers to the composite beam.  The moment per unit width is M = 

Pl/2b, with P being the total load and l is the spacing between inner and outer load lines.  

Trends in Gss with relative dimensions h1/h2 and relative modulus E2/E1 are depicted in 

Figure 14.  With an increase in upper beam thickness there is an increase in Gss, and an 

increase in the modulus of the lower layer results in Gss decrease. 

E2/E1= 

E1/E2 = 

 

Figure 14. Trend in steady state strain energy release rates with the film thickness 
and modulus ratios [36]. 

 
The four-point bend technique is a very effective test for measuring global 

adhesion values and has the ability for the user to control the applied strain energy release 
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rate.  Currently it is successfully being used to measure the effects of environmentally 

assisted fracture on crack propagation rates [20].  The four-point bend test has its benefits 

and is becoming a widely used adhesion test for thin films.  It was not, however, used for 

the adhesion measurements taken in this thesis, the superlayer indentation test was used 

instead.  When using nanoindentation for adhesion measurements, all derivations and 

equations used are based on a one-dimensional buckling analysis.  Before the indentation 

test can be described, a one-dimensional buckling analysis must be outlined. 

2.3.3 One-dimensional buckling analysis 

Hutchinson and Suo have made the following assumption and have provided 

solutions for the residual stress and the energy for interfacial fracture for a one-

dimensional or straight wall buckle:   

 
1) The film and the substrate are elastic isotropic solids; 

2) The unbuckled film is subject to uniform, equi-biaxial compressive in-plane 

stress, σxx = σyy = -σr (Figure 15 (a)); 

3) The film thickness h is much less than the buckling width  2b (Figure 4); 

4) The substrate is infinitely thick.    
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a) 
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b) 

Figure 15. One-dimensional buckle schematic: a) Residually stressed thin film, b) 
Forces applied to a buckled thin film. 

 

The buckle is modeled as a wide, clamped Euler column of length 2b seen in 

Figure 4.  For a blister to form under these conditions without any externally applied 

forces, the compressive residual stress σr, must exceed the buckling stress σB [13]: 
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where E is the film’s elastic modulus, ν is the Poisson’s ratio of the film, h is the film 

thickness and b is the blister half-width.  The residual stress can then be determined from 

the blister height and buckling stress [13]: 
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where δ is the blister height. 
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For a large residual to buckling stress ratio, the strain energy release rate 

asymptotically approaches [13]: 

E
h
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=      (31), 

 
where G0 is the strain energy per unit area stored in the film. 

When the thin film is under high compressive stress, it can be relieved by 

buckling and the strain energy release rate is given by [13]: 
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=             (32), 

 

The strain energy release rate defined in Equation 31 is equal to the interfacial 

fracture toughness of the thin film when delamination occurs.   

2.3.4 Indentation test 
 

Nanoindentation is a very successful way for measuring the elastic modulus and 

hardness of thin films [25], but it can also be used to measure thin film adhesion.  

Delamination and crack growth are induced with the combination of indentation stresses 

and residual stresses present in the thin film.  Marshall and Evans treated the section of 

film above the delaminating crack induced by indentation as a rigidly clamped disc 

shown in Figure 16 [34].   
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Figure 16. Hypothetical operations used to calculate the strain energy associated 

with an indentation-induced delamination in a stressed film. 
 

In the first step of Figure 16 a delaminated section is hypothetically taken out to 

show the effects of a compressive residual stress, if the section was going to be placed 

back into the sample, the section would have to be recompressed with an edge stress σr.  

The work done would be: 

( ) rrp haU εσπ 2=            (33), 
 

where εr = ∆R/a and 2a is the crack length.  This is equivalent to the residual strain energy 

stored within the delaminated section before removal.  The total energy of the system, UR 
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= US + Up, is independent of crack length for an unbuckled plate.  Therefore, the strain 

energy in the remainder of the film, US = UR - Up, must depend on the delamination 

radius, where UR can now be treated as a constant.  

 In the second step, the indentation is made and it creates a plastic zone of 

deformation leaving a permanent impression of volume VI.  It is assumed that volume is 

conserved and results in radial displacements at the crack tip.  It is modeled as an 

internally pressurized cylinder inducing a radial expansion ∆I at the edges equal to: 

ha
VI

I π2
=∆          (34), 

 

where the indentation strain is defined as εI = ∆I/a and the stress required to recompress 

the section ∆I is: 
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The internally pressurized cylinder has a radius-dependent elastic strain energy 

distribution with a total work done of: 
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In the third step the expanded section is recompressed by a combination of the 

residual and indentation stress, and the strain energy induced is: 

( )( ) ( )( )( )[ ]BRIBRIRIRIRI haU εεεσσσαεεσσπ −+−+−+++= 12       (37), 
 

where α represents the slope of the buckling load versus the edge displacement upon 

buckling: 
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For the case of non-buckling fracture, when α = 1, delamination is only driven by 

the indentation stress and the residual stress does not come into play.  This can be seen in 

the following strain energy release rate Equation 38. 

In step four there is reinsertion and the total strain energy is the sum of the strain 

energies just described.  The sum of the strain energies can be differentiated with respect 

to the crack area A in order to find the strain energy release rate G [34]:  
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     (39). 

   

Two problems likely to be encountered in a single layer indentation test are pile-

up of the thin film around the indenter tip and penetration to depths greater than the film 

thickness.  If the indent is made too deeply, deformation and cracking of the substrate 

may occur and would reduce the validity of the test.  Both problems can be controlled 

using the superlayer indentation technique, which consists of depositing a hard superlayer 

on top of the film of interest.  The superlayer can be deposited by means of relatively low 

temperature physical vapor technique such as sputtering, where the temperature is not 

high enough to alter the microstructure or interface of the original film. The superlayer 

can be tailored to optimize conditions for film thickness and residual stress, which allows 

for greater driving force for the same penetration depth to film thickness ratio.  One 

condition that must be met for the superlayer indentation method to work is that the 
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superlayer must adhere to the film more strongly than the film adheres to the substrate.  If 

this condition is not met, the measurement obtained for adhesion will be for the 

superlayer to film and not the adhesion of the film of interest to the substrate. 

Kriese and Gerberich have combined the idea of a superlayer test with the 

Marshall and Evans findings by applying the laminate theory in order to calculate the 

strain energy release rate for a multilayer sample [37].  For many cases the superlayer is 

much thicker than the underlayer and the laminate theory does not need to be applied, as 

the test can be treated the same as the single layer test defined by Marshall and Evans. 

All adhesion measurements in this thesis were performed using the superlayer 

indentation test.  The only two measurements required to calculate the strain energy 

release rate are the blister radius and inelastic indentation depth.  Blister radius is found 

by using an optical microscope (Figure 17) with a micron ruler superimposed on the lens 

in the eye piece.  A maximum magnification of 200X was used, as an increase in 

magnification decreases the users’ ability to see height changes in the film.  At 200X 

magnification, the radii measurements could be taken to approximately ± 1 µm accuracy.  

The plastic indentation depth δpl can be found using the Oliver-Pharr method from the 

load-displacement curve [25] (Figure 18).   
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50 µm 50 µm 

 
 

Figure 17. Delamination blister produced in the superlayer indentation test. 
 

The delamination blisters and load-displacement curve seen in Figure 17 and 

Figure 18 respectively were produced using the Hysitron Triboindenter® with the 

multirange transducer.  The same system is used for both mechanical properties testing 

and adhesion measurements.  Two different transducers are available depending on the 

maximum load needed.  There is almost no sample preparation required for the use of the 

nanoindenter when testing thin film mechanical properties and adhesion.  The multirange 

transducer and stage layout of the nanoindenter are pictured in Figure 19.   

The samples are first fixed to steel backings so they can be secured on the 

magnetic stage.  The user then controls the movement of the stage in the x and y 

directions to choose a location for indentation.  After the user focuses the objective lens 

on the sample of interest, indent settings are specified.  The stage will position itself so 

that the transducer is now above the location where the objective lens had previously 
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focused.  The transducer and objective lens then move in the z direction upon indentation.  

After the indent has been completed the transducer and objective lens are raised.  The 

stage is then positioned back to the original location where the objective lens was 

focused.  

δpl

 

Figure 18. Load-displacement curve for plastic indentation depth determination. 
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Figure 19. Nanoindenter with a multirange transducer. 

2.4 Residual stresses 
 

If the proper conditions are not met during deposition of thin films, high residual 

stresses may be present, leading to film failure.  Residual stresses can be partially 

relieved through plastic deformation, cracking, or delamination.  Residual stresses in 

tension usually lead to cracking and interfacial delamination, while residual stresses in 

compression typically lead to film buckling and delamination from the substrate [38].  In 

the superlayer indentation test the thin film residual stresses provide additional energy 

helping to propagate a crack along at the film/substrate interface.  The use of residual 

stresses allows for lower externally applied loads needed to induce delamination in the 

superlayer indentation test.  

When using PVD methods film thickness can sometimes vary up to as much as 10% 

on a 4 in. diameter wafer [39].  For copper thin films residual stress increases with 
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increasing film thickness, where in molybdenum thin films residual stress decreases with 

increasing film thickness [39, 40].  Figure 21 shows that there can be up to 50% variation 

in residual stress in a 6 in. diameter wafer.  Laser deflection and optical lever cantilever 

beam techniques were used to get average residual stresses across the entire wafer [38]. 

 

 

 
 
 
 
 

 
 
 
 
 
 
 

 
 
 

Figure 20. Residual stress map of a 1 µm W film on a 6” Si wafer [38]. 

2.4.1 Stoney’s equation 

Since the mid 1800’s it was well known that metallic films deposited by 

electroplating would peel off if deposited to any considerable thickness.  It was 

concluded that the metals deposited where under tension.  The average residual biaxial 

stresses in the films can be calculated by using the Stoney equation [41]: 
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where Es is the elastic modulus of the substrate,νs is the Poisson’s ratio of the substrate, 

hs is the substrate thickness, hf is the film thickness, R1 is the radius of curvature of the 

substrate before deposition and R2 is the radius of curvature of the substrate after 

deposition.  The Young’s modulus of the film is not required to evaluate the stresses in 

the film with this method because the film thickness is considered insignificant compared 

to the substrate thickness.   

2.4.2 X-ray diffraction for stress determination 

In X-ray diffraction the strain in the crystal lattice is measured and the residual 

stress producing the strain is then calculated, assuming a linear elastic distortion of the 

crystal lattice.  To determine the stress, the stain in the crystal lattice must be measured 

for at least two precisely known orientations relative to the sample surface (Figure 21).  

Therefore, X-ray diffraction for residual stress measurement is applicable to materials 

that are crystalline and isotropic.   

The sin2Ψ technique is a successful method used for finding residual stress by 

means of X-ray diffraction, where residual stress is defined as [42]: 
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where d0 is the unstrained lattice spacing for the crystal structure of concern and 

∂dφψ/∂sin2Ψ can be found by plotting the lattice spacing found at the varying angles of Ψ, 

against the values of sin2Ψ seen in Figure 22.  Stress in the z-direction is assumed to be 
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zero, and if the slope of the plot seen in Figure 22 is linear, biaxial stress can be assumed 

[42]. 

 

σ2 

Ψ 

σ1 

σφ φ 

Figure 21. Sin2Ψ technique setup. 
 

Residual stress measurements were taken on a tungsten film using both the Stoney 

equation and the sin2Ψ technique.  An average biaxial compressive residual stress of 1 

GPa was calculated with the Stoney equation and a locally measured value of 1.33 GPa 

was determined using the sin2Ψ technique.  These values correspond to the changes in 

residual stress that can be seen across a wafer by up to 50%, similar to the results shown 

in Figure 20.  For the tungsten film tested, the majority of crystallographic planes 

detected were in the (220) direction, which corresponds to a peak at the 2θ angle of 

86.54° (Figure 23). 
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Figure 22. Strained lattice spacing vs. sin2Ψ for a tungsten thin film. 

 

0

100

200

300

400

500

600

700

83 84 85 86 87 88 89 90 91

2 Theta

cp
s

 

Figure 23. X-ray data for (220) tungsten film.
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CHAPTER 3 

ADHESION MEASUREMENTS 

3.1 Sample preparation 

Adhesion measurements in dry and wet environments were conducted on three 

different samples.  One sample had a 5 nm thick diamond like carbon film (DLC), 

deposited by PECVD on a 3” silicon wafer with a 300 nm thick layer of SiO2 and was 

supplied by Seagate.  An 800 nm thick tungsten superlayer was sputter deposited on top 

of the DLC film (1.9 GPa compressive residual stress).  Amorphous carbon films 5-10 

nm thick are applied on the surface of magnetic media for protection.  DLC films are 

being used due to their chemical inertness, high hardness and wear resistance with low 

friction coefficients [43, 44].  High adhesion of DCL films is required, because any 

delamination of the coating from the surface can damage the head and make media 

unreadable.   

The two other samples of interest were copper films sputter deposited on a silicon 

substrate with a 1 µm  layer of SiO2.  A 1.1 µm thick tungsten superlayer was sputter 

deposited on top of both copper films (320 MPa compressive residually stress).  The first 

copper film tested was 67 nm thick, and the second was 97 nm thick.  Copper adhesion 

has been of interest since the late 1990’s when research was conducted regarding the 

possibilities of replacing aluminum with copper as the choice for interconnect material in 

microelectronics.  Not only does copper have better electrical and thermal conductivity 
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than aluminum, copper interconnects provide higher current densities and better 

electromigration performance.  One major disadvantage, however, of using copper films 

is that they have lower adhesion to Si substrates than aluminum.  For this reason, it was 

necessary to quantify the adhesion of copper to silicon and to experiment with moisture 

effects that may be seen in a production environment. 

3.2 Adhesion measurements in a dry environment 

Once the samples are prepared, testing adhesion using the indentation method is 

relatively simple.  One point to keep in mind when using indentation, is that when an 

indent is made, the strain energy release rate measured is only for a small area of the 

sample.  To compensate for this localized effect, 4 trials of indents were made at different 

locations on each sample. Each trial consisted of 5 to 10 indents at varying loads, with the 

same load variation being used for each trial.  The Hysitron Triboindenter was used for 

all of the adhesion measurements and all parameters and settings remained consistent for 

all the samples.   

Indentation was performed under load control, while the total indent time was 

kept the same for all indents on three different samples.  Every time, prior to use, 

calibration of the transducer was performed before the indents were made.  For each trial 

it was important to achieve matching of load-displacement curves in order to verify that 

the indentation process was working properly and that the calibration had been done 

correctly.  Load-displacement curves may vary slightly between the different trials due to 

variations in film thickness and residual stress.  The first trial of indents performed on the 

97 nm thick sample of copper is shown in Figure 24. 
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Figure 24. Load-displacement curves for a 97 nm thick copper film. 
 

To ensure that usable measurements were taken, it was necessary to keep the 

maximum loads within a certain range.  If the loads applied were too small, no 

delamination blisters appeared.  If too high of a load was applied, extensive radial cracks 

appeared in the thin film along with substrate fracture, making adhesion calculations less 

accurate.  The range for the maximum applied loads on the DLC film was from 200 mN 

to 400 mN.  For the 67 nm and 97 nm thick copper films the maximum load was kept 

between 100 mN and 275 mN.  Figure 25 shows radial cracks that appeared if too high of 

a load was applied.  Large excursions in the load-displacement curves were noticed every 

time extensive radial cracking was seen in the buckled thin film (Figure 26).  Further 

investigation of the shifts in the load-displacement curves will need to done to explain 
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their appearance.  Besides film cracking, their presence could also be attributed to 

substrate fracture or buckling of the thin film upon interface debonding.  It was observed 

that the shifts in the load-displacement curves would repeatedly appear around the same 

load for each sample. 

50 µm 

 

Figure 25. Radial cracks in delamination blister. 
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Figure 26. Shift in load-displacement curve. 
 

The strain energy release rates have been plotted against the ratio of the 

delamination blister radius to the contact radius, x/a, defined in Figure 27.  For smaller 

indents and x/a ratios, larger strain energy release rates were measured and as the indents 

were made to greater depths and larger x/a ratios, the strain energy release rate decreased 

(Figure 28 - Figure 30).   

The steady state adhesion value is assumed when the strain energy release rate 

starts to plateau off at larger x/a ratios.  This value is taken because there are two 

components that contribute to the elastic energy in the film that drives interfacial 

delamination.  For smaller indents, where x/a < 5, there is an indentation-induced stress 

that drives interfacial cracking.  For x/a ratios greater than 5, the residual stress in the 
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superlayer is the largest contributing factor for interfacial crack growth [45].  For the 

adhesion values reported here, the plateau in strain energy release rate occurred at x/a 

ratios greater than 8.  A comparison of the adhesion measurements for the three different 

films in a dry environment are seen in Table 1, where the strain energy release rate was 

averaged for a delamination blister radius to crack length ratio between 9 and 12. 

 

a
x

50 µm

Figure 27. Definition x/a dimensions. 
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Figure 28. Strain energy release rates for the 67 nm thick copper film. 
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Figure 29. Strain energy release rates for the 97nm thick copper film. 
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Figure 30. Strain energy release rates for the 5 nm thick DLC film. 
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When the strain energy release rate is plotted against the x/a ratio, all three 

samples exhibit a similar parabolic shape behavior.  A power trendline was plotted on 

Figure 28 - Figure 30 using the equation y = cxb to calculate the least squares fit through 

the data points.  All film adhesion measurements were recorded for x/a ratios of 9-12, 

which can be compared to the ratio of indentation depth to bi-layer film thickness.  It is 

interesting to note the differences in depths needed to reach larger x/a ratios.  Substrate 

fracture is likely to occur if indentations are made too deep, which may lead to 

inaccuracies in adhesion measurements.  Further tests will need to be made to look at the 

effects of making deeper indents, where the indenter tip penetrates over a micron into the 

silicon substrate. 

 
Table 1. Strain energy release rates in dry environment. 

 
Sample x/a Depth/Thickness G (J/m2) 

Cu 67 nm 9 - 12 1.5 - 2.4 2.74 ± 0.86 

Cu 97 nm 9 - 12 0.8 - 1.8 1.98 ± 0.82 

DCL 5 nm 9 - 12 2.0 - 3.5 2.09 ± 0.31 

 
 

Past tests have been conducted on the same copper samples where the strain 

energy release rate for a 67 nm thick layer of copper was recorded to be between 0.4 and 

2.0 J/m2 and for the 97 nm thick film of copper the recorded value was between 0.1 and 

0.5 J/m2 [45].  Discrepancies in reported strain energy release rates and the present study 

are thought to be due to a 7-year period of time between the copper film adhesion tests.  

Over such a long time copper diffusion into the SiO2/Si layers could be causing higher 
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recorded adhesion values. Due to the localized nature of the indentation test, various 

areas of the initial wafer should be tested to get a more accurate average film adhesion. 

Whether or not the exact same values were reported, the trend is the same for the 

two different studies.  Film adhesion was measured to be lower for the 97 nm thick 

copper film than for the 67 nm thick copper film.  Table 2 reports copper film adhesion 

from the past tests and also compares copper adhesion to aluminum and titanium 

underlayers on a silicon substrate.  Different types of underlayers or barrier layers such as 

titanium, tantalum and tungsten have been shown to increase film adhesion to the silicon 

substrate.  Underlayers have helped solve the problem of copper diffusion into the 

substrate and interlayer dielectric (ILD).   

Table 2. Adhesion of thin films in dry environment. 
 
 

Sample Thickness (nm) G (J/m2) Reference 

W/Cu/SiO2/Si 40 - 4000 0.2 – 2 [1, 45-49] 

W/Cu/Ti/ SiO2/Si 40 - 4000 3.63 [1, 45] 

W/Al/ SiO2/Si 40 - 3200 4 – 100 [40] 

 

 

 

 

 

3.3 Effects of indenter tip geometry on adhesion measurements 
 

A Berkovich tip was originally used to measure the 5 nm thick DLC film 

adhesion and then measurements were repeated with a 1 µm radius conical tip.  The 

results using the two different tips were then compared.  Film adhesion was measured to 

be 4.3 ± 0.2 J/m2 with the Berkovich tip, compared to 2.09 ± 0.31 J/m2 with the conical 

tip.  Higher values with the Berkovich tip were initially thought to be caused by using the 
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theoretical tip geometry when calculating the volume displaced by the indenter.  The 

theoretical tip geometry does not account for a slightly blunted tip which has a tip radius 

between 100 – 200 nm.  After examining impressions left by the Berkovich tip, 

neglecting the tip radius was longer thought to be the only cause of difference between 

the adhesion measurements.  The Berkovich tip that was used had an extended shaft so 

that it could be used in fluids.  If the tip makes penetration perpendicular to the film 

surface a perfectly equilateral triangle would be expected as a result. 

Radial 
Crack

25 µm 

Contact 
Area

Delamination 
Outline

 

Figure 31. Delamination induced by a Berkovich tip. 

Figure 31 shows the tip impression and radial cracks left by the fluid cell 

Berkovich tip.  It is observed that the edge impression and radial crack on the lower right 

hand corner are slightly longer than the other two creases and radial cracks.  This means 

that the Berkovich tip did not penetrate the film perpendicular to its surface.  The slight 

offset of the tip would further add to the inaccuracies when calculating the displaced 
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volume.  The conical tip was chosen for its geometry, as the slight offsets of the fluid cell 

shaft were less of a factor when calculating the displaced volume.  Therefore, the 1 µm 

radius conical tip was used for all further adhesion measurements. 

Blister symmetry is another important factor in analyzing delaminations for adhesion 

measurements.  Indents made with the conical tip consistently resulted in circular blisters.  

Indents made with the Berkovich tip were often observed to be asymmetrical in shape 

(Figure 32).  The main reason for the asymmetrical blister shape with the Berkovich tip 

could be attributed to the same reason for errors when calculating the strain energy 

release rates.  If the tip did not come down perpendicular to the film surface it would 

create a small snowplow effect, resulting in an unequal force distribution.   

At higher maximum applied loads with the Berkovich tip, circular blister 

delaminations are observed.  Even when perfectly circular delaminations are produced 

radial cracks are seen where the sharp edges of the Berkovich tip made contact.  With the 

conical tip, a one dimensional analysis of the circular blister can be used as it is assumed 

that the load distributed by the indenter tip will be equal all around the blister.  With the 

Berkovich tip, this assumption may no longer be true and a different approach needs to be 

taken in calculating the strain energy release rate. 

 54 
 



www.manaraa.com

50 µm 

 

Figure 32. Asymmetrical delamination blisters made with Berkovich tip. 
   

3.4 Double indent test 

The superlayer indentation test was slightly modified to introduce water at the 

film/substrate interface to be able to quantify film adhesion in a wet environment.  An 

initial indent was made to a depth equal to the thickness of both the superlayer and the 

film of interest.  De-ionized water was then placed in the area where the initial indent was 

made using a volumetric pipette.  A second indent was made in the same spot as the first 

one, but to a larger load, thereby supplying additional energy to drive film delamination.  

The same approach was taken in the single indent tests, for determining the blister radius 

and the plastic indentation depth in the double indent test.   

A double indent was first performed on the 67 nm thick copper film in the dry 

environment and compared to a single indent at the same maximum load in a dry 

environment to see what effect was caused by double indent process on adhesion 
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measurements.  It can be seen in Figure 33 that the loading and unloading curves for both 

the single indent and double indent made to the same maximum load in a dry 

environment do not match up, since the the Hysitron Triboindenter® does not record 

changes in load and displacement until initial contact is made.  The 300 nm shift to the 

right for the double indent was applied after the indentation process.  The shift amount 

was taken as the final depth of the initial indent.   

 

Figure 33. Double indent versus single indent in dry environment. 

Not only is it apparent that the double indent procedure went deeper than the 

single indent, but the final delamination blister radius for the double indent was 2.5 µm 

larger than the single indent to the same maximum load.  Both delamination blister radius 

and plastic indentation depth are used in calculating the strain energy release rate.  When 

the strain energy release rate was calculated for the double indent in the dry environment, 
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it was found to be the same as single indents with the same x/a ratios (Table 3).  These 

findings prove that the double indent procedure has no effect on changing the outcomes 

for measuring film adhesion.     

The strain energy release rate measurements in Table 3 provide sufficient 

evidence that the double indent procedure has little or no effect on the film adhesion 

measurements.  The variation shown for the double indent procedure falls within the 

variance observed for taking measurements with a single indent.  

Table 3. Double and single indent adhesion results in dry environment.  
 

 Indent Procedure Maximum Load (mN) x/a G (J/m2) 
Double Indent (Dry) 200 7 - 8 7.8 ± 0.3 
Single Indent (Dry) 225 - 250 7 - 8 8.1 ± 0.5  

3.5 Adhesion measurements in a wet environment 

Since the double indent procedure produced no discrepancies in measuring film 

adhesion in the dry environment, the effects of water on film adhesion were clearly 

evidenced.  Measuring copper film adhesion in the wet environment was successful from 

the first conducted test, as larger delamination blister radii were immediately noticed with 

the introduction of water.  In regard to the DLC film there was an apparent effect of water 

on film adhesion.  Unfortunately the delamination blister shape was not circular, as the 

initial tests on the DLC film produced telephone cord delaminations immediately upon 

the introduction of water (Figure 34). 
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100 µm 

 

Figure 34. Telephone cord delamination induced in DCL film by water and 
indentation. 

 
Telephone cord delamination blisters (Figure 35) have been observed when the 

compressive residual stress of the film was at least a factor of 8 greater than the critical 

buckling stress of the film [1, 38, 50, 51].  As soon as the water was removed from the 

DLC film the telephone cord delaminations would stop propagating.  Even though 

circular blisters were not initially present to calculate the adhesion of the DLC films in a 

wet environment, there was an apparent effect of water reducing the adhesion of the DLC 

films. 
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100 µm 

Figure 35. Telephone cord delamination. 

For the copper thin films, much larger radii measurements were taken in the wet 

environment compared to indents of the same maximum load in the dry environment 

(Figure 36).  In Figure 36 150 mN indents were performed on the 67 nm thick copper 

film in dry and wet environments.  The difference in blister diameters is obvious and 

radial cracks can be seen on the right blister.  Telephone cord delaminations were never 

seen with the copper films, unlike with the DCL films, therefore blister radius and plastic 

indentation depth were immediately taken to calculate film adhesion. 
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Figure 36. Indents in the 67nm thick copper film in dry and wet environments. 
 

For the DLC film in the dry environment the range of the maximum loads was 

from 200 to 400 mN.  When the double indent procedure was first attempted in the wet 

environment the introductory indent was made to a maximum load of 200 mN and the 

second indent was made to a maximum load of 250 mN.  After the introductory indent 

was dropped down to a maximum load of 150 mN and the second indent was changed to 

a maximum load of 200 mN, telephone cord delaminations no longer appeared.  If the 

introductory and second indent loads were dropped any lower there were no observed 

changes in size of the delamination blisters.  No changes were observed because water 

was not able to reach the interface, as the indentation depth was too shallow and the film 

stack was not penetrated (Figure 37).  The load range was more restricted during the 
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double indent test for the DLC film than the copper films due to the telephone cord 

delaminations appearing upon the introduction of water.  

 

 

 

film 

Substrate 
H2O Reaching 
the Interface 

H2O 

 
Figure 37. Schematic of necessary penetration depth for water to induce 

delamination.  
 

Symmetric blister shapes that were seen for the 67 nm thick copper film, were not 

seen for the 97 nm thick copper film and the DLC film.  Lower film adhesion, residual to 

buckling stress ratio (σr/σB) and biaxial stress conditions are thought to be the 

contributors to the asymmetrical blister shapes.  For elliptical shaped blister in the wet 

environment, the radii were recorded in both the major and minor radial directions, then 

averaged to calculate adhesion (Figure 38). 

100 µm 

 

Figure 38. Asymmetrical blister shape of the 97 nm thick copper film. 
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Adhesion measurements in the wet environment for both samples of copper 

showed a reduction in adhesion by a factor of 10 to 20 compared to those performed in 

the dry environment.  For the 67 nm thick copper sample the average adhesion in a wet 

environment was 0.15 J/m2, and for the 97 nm thick sample the average adhesion value in 

a wet environment was 0.10 J/m2.  For both copper samples, the blister diameter for a 150 

mN indent in the dry environment was approximately 20 µm and increased up to 150 µm 

when the double indent was made in the wet environment.  The DLC film adhesion 

dropped by a factor of 50 to 60 in the wet environment and was measured to be 0.015 

J/m2.  Table 4 compares film adhesion and blister sizes for the same maximum loads in 

dry and wet environments. 

Table 4. Adhesion of thin films in wet environment. 
 

Sample Blister Diameter (µm) G (J/m2) 

Cu 67 nm (Dry) 20 ± 5.0 2.74 ± 0.86 

Cu 67 nm (Wet) 150 ± 15 0.15 ± 0.05 

Cu 97 nm (Dry) 20 ± 5.0 1.98 ± 0.82 

Cu 97 nm (Wet) 150 ± 20 0.10 ± 0.01 

DLC (Dry) 15 ± 5.0 2.09 ± 0.31 

DLC (Wet) 100 ± 20 0.035 ± 0.015 

 

 

 

 

 

 

 

 

Figure 39 shows a load-displacement curve for a double indent made in the wet 

environment for the 97 nm thick copper film.  An introductory indent made to a 

maximum load of a 100 mN and a second indent to a load of 150 mN, compared to a 

single indent made in a dry environment to a maximum load of 150 mN.  
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Figure 39. Double indent in wet environment. 

3.6 Substrate fracture and film buckling  

Not only did blister radius and indent depth drastically change with the presence 

of water, but the load excursions dropped dramatically.  In the dry environment, load 

excursions were observed at approximately 275 mN.  However, in the wet environment 

load excursion happened at approximately 125 mN (Figure 40).  The loads at which these 

excursions happened, were always the same. 

Every time these load excursions have been observed, extensive cracking of the 

buckled film and the substrate was observed.  The radial cracks in the buckled thin film 

start at the indent in the center of the delamination blister and move outward.  Fractures 

in the substrate were always observed at 90º angle from each other (Figure 41).   
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Figure 40. Load excursions in wet and dry environments. 
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Figure 41. Substrate and film fracture patterns. 
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3.7 Reduction in adhesion 

It is apparent that with the introduction of water, film adhesion drops and crack 

propagation rates increase.  Until now, only changes in crack propagation rates as the 

result of an introduction of moisture has been quantified [17, 20, 21].  With such high 

values of compressive residual stress present in the copper and DLC films, only a small 

reduction in interfacial toughness is required to drive debonding of the film from the 

substrate.  For the DLC films an introduction of water at the crack tip was enough to 

drive interfacial cracking further, but for the copper films an additional driving force was 

needed to propagate interfacial cracking.  This could indicate that there is greater residual 

stress in the tungsten superlayer of the DLC film.   

For the copper samples, oxidation may be taking place with the introduction of 

water at the film/substrate interface, unlike for the DLC film.  No evidence has been 

found that DLC films will chemically react with water.  Moisture effects in DLC films 

have only been reported to increase their frictional properties.  A pull off test was 

conducted to measure the effects of water on DLC film adhesion, but no change was 

reported [52].  This test may be faulty, however, as no evidence was shown that water 

was present at the film/substrate interface.  Water may be lowering the surface energies at 

the interface, which may be enough in combination with capillary pressure and high 

residual stresses to drive interfacial debonding of DLC films.   

It is thought that copper films may have similar chemical reactions with water as 

bulk glasses and Ta/SiO2 interfaces [17, 53]. For bulk glasses, the chemical reaction at 

the crack tip is due to water molecules absorption by the strained Si-O bonds [21]: 

H2O + Si-O → 2SiOH                      (42). 
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Upon debonding at the Ta/SiO2 interface, Ta is expected to be oxidized following the 

reaction [53]: 

2Ta + 5 H2O → Ta2O5 + 10H+         (43). 

Copper oxidation was seen at elevated temperatures as a result of chemical-

mechanical polishing (CMP) [54-56].  At ambient conditions, it is still 

thermodynamically favorable for a thin layer of oxide to form on the surface.  Two 

possible copper oxides that may form are cuprous and cupric oxides: 

Cu + O2 → Cu2O 

2Cu + O2 → CuO             (44). 

Cu2O is more likely to form at low temperature, but small amounts of CuO could 

also form.  It has been shown that copper oxide lowers thin film adhesion [56, 57].  

Copper oxide is approximately twice as hard as pure copper, so reduction in adhesion is 

expected. 

Copper oxide at the interface may restrict the amount of plasticity around the 

crack tip.  If that is the case, less energy would be dissipated by plastic deformation and 

more energy would be used in creating two new surfaces.  Usually, the thicker the metal 

film, the more plastic deformation can take place, which will lead to higher adhesion 

values [46, 47, 53, 58].   

Proof that copper oxidation can occur at the film/substrate interface was 

discovered when trying to solve copper diffusion problems [54].  A particular concern 

with copper technology is that copper may interact with interlayer dielectric material to 

degrade the interface and lead to a loss of adhesion.  Copper transport into the dielectric 

material may also cause line-to-line leakage or electrical short circuits [59].  It has been 
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concluded that copper by itself will only diffuse into dielectric layers at elevated 

temperatures and/or with an applied voltage.  Tests showed that high concentrations of O2 

or water present at the SiO2 surface form a thin layer of copper oxide, which acts as a 

source of copper ions.  These copper ions have been seen to then transport through the 

SiO2 at low temperatures and electric fields less than 1.0 MV/cm [54].  The transport of 

copper ions is a verification that a thin layer of copper oxide is formed in the presence of 

O2 or water. 

In conclusion, results have shown that water significantly reduces film adhesion.  

The primary reason for a reduction in film adhesion is thought to be due to a lowering of 

surface energy at the crack tip.  Lower film adhesion may also be affected by surface 

oxidation and contaminants in the water.  Oxidation of the copper film was supported by 

past findings for a Ta/SiO2 interface [53].  Additional studies will be taken to further 

explain possible crack tip reactions for the DLC film.  The telephone cord delaminations 

as a result of water introduction to the DLC film will be discussed next.   
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CHAPTER 4 

FLUID TRANSPORT THROUGH DELAMINATIONS 

4.1 Telephone cord delamination propagation 

 
When the amount of stored elastic energy in a thin film due to the residual stress 

exceeds the interfacial toughness, fracture normally occurs.  For the DLC film, equi-

biaxial film stress may be partially relieved by either straight-sided blisters or telephone 

cord propagation.  For the 5 nm thick DLC film used in the indentation tests, telephone 

cord delaminations were observed and straight-sided blisters were seen in a second 

sample provided by Seagate that had a 20 nm thick DLC film.  However, there were no 

straight-sided or telephone cord delaminations noticed on the copper samples.  Telephone 

cord blisters occur by “secondary” blister buckling perpendicular to its propagation 

direction, which results in the sinusoidal fracture patterns.  If the compressive residual 

stress is at least 4 times the buckling stress, telephone cord morphology is commonly 

observed [1, 29, 38, 50, 51, 60].  Recent studies have been conducted to predict buckling 

patterns [29, 60].  This was accomplished by creating an experimental setup where 

factors such as film stress, thickness and interfacial adhesion were controlled.  

Moon and colleagues have been able to control the buckling parameters by using 

lithographic techniques to create areas of low adhesion on substrates [29].  On a 

macroscopic level buckling patterns were controlled by gluing a polycarbonate strip to a 
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PVC block and applying forces in two directions using screws (perpendicular and parallel 

to the strip) [60].  For both methods a residual to buckling stress ratio of σr/σB = 5 

produced straight-sided or Euler blisters, σr/σB = 6.5 predicts bumps or varicose blisters 

and for σr/σB = 7.5 telephone cord blisters would appear (Figure 42).  For the experiment, 

where the biaxial stress could be controlled, various buckling patterns appear when the 

stresses perpendicular and parallel to the film strip were not equal. 

When the stress perpendicular to the film strip (transverse) was much larger than 

the stress parallel to the film strip (lateral), the straight-sided blister would always appear.  

If the lateral stress was much larger than the transverse stress, bumps or varicose blisters 

would form.  For combinations in between, where stresses were not equi-biaxial, a 

combination of a telephone cord and varicose blister would form [60]. 

 

Figure 42. Buckling patterns in compressed films [60]. 
 

If the profile of a straight-sided blister is taken, the derivations made by 

Hutchinson and Suo for a one-dimensional blister can be used to calculate thin film 

residual stress, buckling stress and strain energy release rate (Figure 43) [13].   
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Figure 43. Blister height profile. 
 

Recalling equations that were presented in Chapter 2 and using the blister height 

profile in Figure 43, the critical buckling stress in the 20 nm thick DLC film with W 

superlayer was calculated to be 365 MPa (Equation 29).  Knowing the film thickness, the 

straight-sided blister height and using the critical buckling stress, the residual stress of the 

film was calculated to be 1.9 GPa (Equation 30).  The calculated value of residual stress 

of 1.9 GPa confirms the measured value for residual stress using the wafer curvature 

technique.  Calculating the σr/σB ratio for the 20 nm thick DLC film to be 5.4, agrees with 

the Moon and Audoly findings for predicting straight-sided buckling patterns in 

compressed films [29, 60].   

With the found residual and critical buckling stresses, the strain energy release 

rate in the buckling direction was calculated to be 4.66 J/m2.  This value is in agreement 

with the indentation result of 5.5 ± 0.2 J/m2 for the 20 nm thick DLC film. 

For straight-sided blisters the strain energy release rate can also be found in the 

direction of crack propagation [13]: 
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The strain energy release rate in the direction of blister propagation in the 20 nm thick 

DLC film was calculated to be 2.45 J/m2. 

Normally these straight-sided or telephone cord blisters “run out of steam” and 

stop once the interfacial toughness exceeds the strain energy release rate.  It is possible to 

make blisters propagate further by either applying mechanical energy to the system, or by 

introducing liquids at the crack tip, thus reducing the film interfacial toughness.  

2b 

L 
Figure 44. Transition from straight-sided blister to sinusoidal shape. 

Straight-sided blisters will precede the sinusoidal pattern until a critical length is 

reached.  For films with σr/σB =  6.5 Moon has recorded the onset of a sinusoidal pattern 

to start appearing when the ratio of blister length to width (L/2b) equals 0.96 [29].   
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The transition from a straight-sided delamination to a telephone cord delamination is 

shown inFigure 44.  Here sinusoidal transition is observed with a L/2b ratio of 

approximately 1.67 [38]. 

It has been shown that telephone cord delaminations can be forced to propagate 

by applying mechanical forces [38].  Similar blister propagation has been observed with 

the introduction of water.  To induce telephone cord propagation by the introduction of 

water, the samples were first mounted to a stage of an optical microscope by a small 

amount of adhesive.  Since the samples were scribed from a 4-inch wafer, small blisters 

were randomly present at the edges of the samples.  After an edge of the sample was 

located with blisters present, water was placed on the stage in contact with the edge of the 

sample.  Delamination of DLC films was immediately seen when the water came into 

contact with the edge of the sample.  In Figure 45, propagation is seen for the blister 

coming from the top, where distilled water was introduced.  Growth was not noticed in 

the bottom blister where no fluid was present.  Propagation of the telephone cord 

delaminations continued until the water was taken away from the sample, or the blister 

reached the film edge on the opposite side of the sample.   

0 sec 30 sec
 

Figure 45. Telephone cord propagation induced by water introduction. 
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In Figure 46 water exiting the delamination is observed, which proves that water 

is present at the crack tip and is contributing to the telephone cord blister propagation.  

Comparing the two images, water is seen flowing from the opening in the delamination 

and is moving some of the small loose fragments of the thin film.  The delamination size 

has also increased.  In this experiment distilled water was introduced on the right side of 

the sample and forced a telephone cord delamination until it had reached the film edge on 

the left side of the sample. 

 
                  
 

 
 
 
 
 

100 µm 

water edge 

water edge  

 
 
 
 
 
 
 
 
 

Figure 46. Water exiting a telephone cord delamination. 

In addition to distilled water, tap water, alcohol and various oils were tried, and 

corresponding propagation rates are listed in Table 5.  Propagation rates were measured 

to be the same for distilled and tap water (pH = 7).  Water temperature effects were also 

tested in the range of 22°C to 72°C.  However, very little difference in propagation rates 

was noticed in this temperature range.  Results for the water temperature effects on the 

DLC film showed propagation rates decreasing with an increase in temperature.  These 

results contradict findings of Lane and Dauskardt for TaN/SiO2 films where propagation 

rates were observed to increase with an increase in temperature [53].  Their findings 
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would indicate a temperature-dependent chemical reaction was taking place at the crack 

tip for the TaN/SiO2 interface, but amorphous carbon films are chemically inert [43, 44]. 

The same localized effects on adhesion due to variations in residual stress seen 

during indentation tests, were also observed during crack propagation rate measurements.  

Propagation rates for the 5 nm thick DLC sample would change with each new scribed 

piece.  For testing the effects of temperature and different liquids, a sample with many 

edge blisters was chosen. This was done so that numerous tests could be performed on 

the same sample piece.  The average size for the scribed sample was approximately 1 x 1 

cm2.   

Table 5. Propagation rates of various fluids in DLC sample. 
 

Fluid Type Propagation Rates (µm/sec) Re 

Isopropyl Alcohol 0 - 

Oil 0.083 1.3 x 10-8

Distilled Water 3-5 2.5 x 10-4

22°C  Tap Water 3-5 2.5 x 10-4

72°C Tap Water 2.5 1.2 x 10-4

 

 

 

 

 

 

 

Figure 47 shows the propagation of a telephone cord delamination where water 

was introduced on the left side.  Frequently, many telephone cord blisters would form in 

close proximity to each other with a spacing of 1-2 microns.  Merging of telephone cord 

delaminations was only noticed when delaminations were propagating from opposite 

directions (Figure 45).     
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Figure 47. Telephone cord propagation. 
 

4.2 Microfluidic application of telephone cord delamination blisters 
  

Microfluidics as a field has been growing with the new advances in 

nanotechnology [61]. In fact, this field has been estimated to grow at a near exponential 

rate in the decades to come. This relatively new technology has been considered for many 

different possible applications in the biomedical field, including drug delivery.  For 

example, pharmacological agents could be successfully delivered directly to the wound 

sites [62].  This potential technology relies on the ability to transfer fluids through 

microchannels.  Channels with at least one dimension less than 1 mm, are usually 

considered in microfluidics.  As a result of microchannels small dimensions, the 

Reynolds number is often much less than 1.  The Reynolds number is defined as: 

v
VL

=Re      (46), 
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where V is the flow velocity, L is the channel width and v is the kinematic fluid viscosity.  

For the maximum propagation rates seen with water, and using the blister profile in 

Figure 43, the Reynolds number in the telephone cord delamination is calculated to be 2.5 

x 10-4. With such a low Reynolds number, flow is completely laminar and no turbulence 

occurs.  Microchannels are commonly etched in silicon by means of standard methods of 

lithography, but because of the multiple steps involved, the whole process is 

cumbersome, expensive, and labor intensive [63].  Delamination blister on the other 

hand, have been created easily and act as microchannels for fluid transport.    

Figure 46 shows that a fluid can not only spur delamination propagation, but will 

also exit the delamination if the blister opens up.  If the direction of the blisters growth 

could be controlled, telephone cord delaminations could be used as microfluidic 

channels.  Substrate patterning to control thin film adhesion has been accomplished [29], 

and may find uses in microfluidic devices if combined with the fluid transport described 

here.  One disadvantage of using the telephone cord delaminations as a fluid transport 

mechanism, would be its one-time use. 

If telephone cord delaminations were to be used as open channels, fluid flow 

pressure would have to be kept low.  Some microdevices produce enough pressure to 

cause total failure of the film.  Telephone cord delaminations have shown some stability 

though, as in Figure 48 they are being manipulated with a tungsten microprobe.  If the 

flow pressure could be controlled, micropumps could be used to force fluid through the 

open delamination channels.  
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water 
exiting 

probe tip 

tip 
direction 

Figure 48. Microprobe manipulation of telephone cord delamination. 
 

  In order to manipulate telephone cord delaminations, a microprobe was set up on 

an adjustable rigid stand, adjacent to an optical microscope.  The microprobe stage had 

the ability to be moved in the X, Y and Z directions (Figure 49).  In Figure 48 the 

microprobe was first used to tear a small hole in the thin film so that the substrate was 

exposed.  Water was then introduced to the edge of the sample to propagate telephone 

cord delaminations in the direction of the thin film tear.  A small amount of water could 

be seen exiting the delamination when it reached the tear.  By pushing the delamination 

with the microprobe towards the tear, water could be forced out of the delamination, and 

appeared on the substrate.  By reversing the direction of the microprobe motion, fluid 

flow was reversed and water was forced back out of the original delamination. 

When the applied forces of the microprobe were kept low enough, delamination 

blisters remained intact.  If micropumps were attached to the delamination channels, fluid 

could be successfully pushed through without creating further interfacial cracks. 
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stage 
probe tip 

 

Figure 49. Microprobe setup. 

4.3 Fluid flow in microchannels 

It is predicted that there is a small pocket of air trapped at the crack tip when a 

fluid is introduced to a crack. [17]. The pocket of air present at the crack tip will produce 

a three phase interaction similar to Figure 50.   

Substrate 

Film 

Crack Propagation Air 
Pocket Fluid 

 

Figure 50. Fluid flow in delamination channel. 

For contact angles less than 90º, the fluid wets, meaning it is more attracted to the 

solid surface and not to itself or the air.  If this condition exists, the solid surface is said to 
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be hydrophilic and it will produce a capillary force in the delamination channel.  The 

capillary force on the fluid in a microchannel, due to the air/liquid/solid interface 

interactions, can be calculated using the following equation: 

)cos(2 θσπ rF ⋅=               (47), 

where r is the channel radius, σ is the interfacial tension between air and liquid, and θ is 

the contact angle defined earlier.  For fluid flow in microchannels this effect is 

represented as an equivalent pressure, or capillary pressure: 

for circular tubes:  
r

P θσ cos2
=              (48), 

for rectangular tubes:  ⎟
⎠
⎞

⎜
⎝
⎛ +=

wh
P 11cosθσ         (49), 

where h and w are the depth and width of the microchannel, respectively.  These 

equations demonstrate that for larger contact angles there is a decrease in force or 

pressure and therefore a decrease in flow rate.  This can explain why water worked so 

well for flowing through the telephone cord delaminations, but the various types of oils 

did not.  Water has a smaller contact angle θ than oil does.  Water was able to easily flow 

in the channels, while oil did not flow without external assistance.  Just by applying a 

mechanical pump to drive fluid flow in microchannels may not be enough, since pumps 

will not change the capillary forces.  Non-mechanical pumps work very well by adding 

an electrical potential, or a temperature difference that will help fluid flow by creating a 

change in the contact angle [64, 65].  Since fluid flow is dominated by the nature of the 

channel surface, different materials could also be used to control the fluid flow.  It has 

been shown that silver on channel surfaces will increase the contact angle of water by 20° 
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and by 27° for methanol, stopping capillary or external pressure-driven fluid flow in 

typical microchannels [66]. 
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CHAPTER 5 

SUMMARY AND FUTURE WORK 

5.1 Summary 

The effects of water on thin film adhesion and telephone cord delamination 

propagation rates have been studied.  Film adhesion in a wet environment was 

quantitatively measured for copper and amorphous carbon films.  Copper films have 

shown a drop in adhesion by a factor of 10 to 20, and the DLC film adhesion was reduced 

by a factor of 50 to 60.  A reduction in adhesion is primarily thought to be due to 

lowering the surface energy at the crack tip.  Lower film adhesion can also be affected by 

surface oxidation and contaminants in the water.  Future studies should be conducted on 

various types of films to further explain the interaction of water at the film interface.  

Additional experiments will provide a better understanding of environmental effects in 

thin films.   

5.2 Various environmental effects 

The effect of moisture on film adhesion and delamination was the primary goal of 

this thesis.  Temperature effects on the delamination propagation rate were also 

considered for a relatively small temperature range, which should be expanded.  

Delamination propagation rates of the DLC film slowed down when water temperature 

was increased from 22 ºC to 72 ºC.  Slower propagation rates would indicate higher film 
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adhesion which agrees with past studies of metal and polymer films [39, 67].  Previous 

tests on copper films have shown an increase in adhesion with temperature increasing 

from 23ºC to 130 ºC.  The adhesion of ethylene-styrene copolymers to polyethylene has 

also increased with increasing temperature, but only in a small temperature range.  The 

reason for an increase in adhesion is thought to be due to lowering of the yield strength of 

the film, therefore increasing the amount of plastic deformation at the crack tip.   

With the growing use of copper in microelectronics, copper films must be able to 

withstand the various fabrication and cleaning processes involved in microelectronics 

manufacturing.  Future experiments will be formulated to observe the effects of varying 

pH levels on copper film adhesion.   

5.3 Radial cracking 

Radial cracking was observed at larger indentation loads during the superlayer 

indentation test.  Film cracking may lead to problems in calculating the strain energy 

release rates, as the current analysis does not account for film and substrate cracking.  

One possible way to introduce radial cracks is to modify the buckling solution to account 

for a pie slice geometry instead of a full circular plate.  Future modeling on a 

macroscopic level as well as finite element analysis of a delamination blister may lead to 

a relation in the load excursions seen in the load-displacement curves to film and 

substrate fracture. 

5.4 Biaxial film stress 

For a one-dimensional or straight wall buckle, it is assumed that the equi-biaxial 

film stress is present when solving for the strain energy release rate.  After indents were 
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made in a wet environment for the 97 nm thick copper film and the 5 nm thick DLC film, 

asymmetrical blister shapes were observed.  These findings may indicate that equi-biaxial 

stress is not present.  To confirm this, a second indent will be performed where the 

sample would be rotated 90º relative to the first indent.  If the blister shape of the second 

indent is still elliptical with the major radius of the ellipse in the same direction as the 

first blister the residual film stress would not be equal to the stress in both principal 

directions.  Radii measurements will be taken to find out what the stress relation is in the 

x/y-axis directions and confirmed with X-ray diffraction. 

5.6 Microfluidic applications 

After observing the potential for fluid transport in delamination channels, the 

usefulness of delamination channels in microfluidic devices will be tested.  The main 

issues to consider are the control and stability of the delaminations for fluid transport.  

Delamination size and direction have been successfully controlled by lithographic 

techniques [29].  To control fluid flow the possibility of different types of micropumps 

and integration of delamination channels into MEMS devices will be examined. 

There are two choices of pumps to pick from, mechanical pumps and non-

mechanical pumps.  Mechanical pumps can be broken up into two categories based on 

the manner in which energy is supplied to them: displacement pumps and dynamic 

pumps.  In displacement pumps energy is periodically added by the application of force 

to one or more moveable boundaries, resulting in pressure increase.  In dynamic pumps 

the energy is continuously added to increase fluid velocities within the machine.  

Disadvantages of the mechanical pumps are the complexity involved with the 

manufacturing of the pump and the relatively large size and high flow rates.  Mechanical 
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pumps may not work with the delamination channels unless increased delamination 

stability is achieved.  

Non-mechanical pumps have their advantages in their use at the microscale and 

their ability to change the capillary force of a fluid.  They add momentum to the fluid by 

converting another non-mechanical energy form into kinetic energy.  Some common 

types of non-mechanical pumps include electrical pumps, surface tension driven pumps, 

chemical pumps and magnetic pumps.  Telephone cord delaminations themselves are 

surface tension driven pumps. 

5.7 Crack propagation rates 

Many of the current publications that review the effects of moisture on thin films 

are using the four-point bend test.  The four-point bend test has a major advantage in the 

fact that the applied strain energy release rate can be controlled.  Future experiments 

using the indentation method will employ displacement control instead of load control.  

Attempts will be made to obtain similar relations between the applied load and regions 

where moisture has a significant effect on crack propagation that the four-point bend test 

can measure.   

Lane and Dauskardt have produced crack velocity versus crack driving energy 

data for TaN/SiO2 interfaces.  These plots show similar results to Wiederhorn’s figure for 

bulk soda-lime glass.  As previously seen, there are three distinct regions where changes 

in the slope are seen.  Region I is only a function of the applied driving energy because 

the crack opening is too narrow for water molecules to reach the crack tip.  In region II 

the crack velocity is strongly dependent on the environment and only slightly on the 
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applied crack driving force.  For region III, crack velocity is no longer dependent on the 

environmental factors and is dominated by the applied driving force. 

Generalizing the chemical rupture process, the interactions between the crack tip 

bonds B and environmental molecules A are: 

*BBnA →+          (50), 

where B* denotes passage over the activation barrier into the ruptured state.  This 

interaction facilitates lateral crack advance through one atomic spacing, with the n 

molecules of the depleted species A left associated with the broken bond on the new 

surfaces created.   

For region I, where the driving energy drops and the crack velocity slows, the 

crack velocity is now controlled by bond rupture.  With a smaller crack opening present, 

there will be a steric hindrance on water molecules and moisture concentration plays no 

role in crack advance:  

⎥
⎦

⎤
⎢
⎣

⎡ −
=

η
ζ2

sinh0
tipG

vv               (51), 

where vo and η are macroscopic crack growth parameters related to the local atomic and 

chemical environment, Gtip is the applied driving force at the crack tip and 2ζ is related to 

the chemical potential of the reacting species [53]: 

( ) ( )[ ]OHABB PRTxN
2

ln2 * +−−= µµµζ     (52), 

where N is the number of bonds per unit area, µB* is the chemical potential of the reactive 

complex, µB is the chemical potential of the unreacted crack tip bonds, µA° is the chemical 

potential of the water molecules and R is the gas constant. 
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Predictions on the dependence of the crack velocity on moisture content in region 

II are as follows: 

( )2
1

0
0

2
3
0

2ln3

64

mkTx
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v OH

ππ ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=           (53), 

where E is the Young’s Modulus, I is the mean free path for the bulk gas, m is the mass 

of the diffusing species, P is the partial pressure of water vapor, x is the number of water 

molecules absorbed per bond, a0 is the bond spacing, G is the mode I driving energy, T is 

the absolute temperature and k is Boltzmann’s constant.   
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